Algorithms for Kullback-Leibler Approximation of Probability Measures in Infinite Dimensions

نویسندگان

  • F. J. Pinski
  • G. Simpson
  • A. M. Stuart
  • H. Weber
چکیده

In this paper we study algorithms to find a Gaussian approximation to a target measure defined on a Hilbert space of functions; the target measure itself is defined via its density with respect to a reference Gaussian measure. We employ the Kullback–Leibler divergence as a distance and find the best Gaussian approximation by minimizing this distance. It then follows that the approximate Gaussian must be equivalent to the Gaussian reference measure, defining a natural function space setting for the underlying calculus of variations problem. We introduce a computational algorithm which is well-adapted to the required minimization, seeking to find the mean as a function, and parameterizing the covariance in two different ways: through low rank perturbations of the reference covariance and through Schrödinger potential perturbations of the inverse reference covariance. Two applications are shown: to a nonlinear inverse problem in elliptic PDEs and to a conditioned diffusion process. These Gaussian approximations also serve to provide a preconditioned proposal distribution for improved preconditioned Crank–Nicolson Monte Carlo– Markov chain sampling of the target distribution. This approach is not only well-adapted to the high dimensional setting, but also behaves well with respect to small observational noise (resp., small temperatures) in the inverse problem (resp., conditioned diffusion).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kullback-Leibler Approximation for Probability Measures on Infinite Dimensional Spaces

In a variety of applications it is important to extract information from a probability measure μ on an infinite dimensional space. Examples include the Bayesian approach to inverse problems and (possibly conditioned) continuous time Markov processes. It may then be of interest to find a measure ν, from within a simple class of measures, which approximates μ. This problem is studied in the case ...

متن کامل

Information Measures via Copula Functions

In applications of differential geometry to problems of parametric inference, the notion of divergence is often used to measure the separation between two parametric densities. Among them, in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger distance, -Divergence, … and so on. Properties and results related to distance between probability d...

متن کامل

Comparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil

In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...

متن کامل

Using Kullback-Leibler distance for performance evaluation of search designs

This paper considers the search problem, introduced by Srivastava cite{Sr}. This is a model discrimination problem. In the context of search linear models, discrimination ability of search designs has been studied by several researchers. Some criteria have been developed to measure this capability, however, they are restricted in a sense of being able to work for searching only one possibl...

متن کامل

Efficient D-optimal Design of Experiments for Infinite-dimensional Bayesian Linear Inverse Problems

We develop a computational framework for D-optimal experimental design for PDEbased Bayesian linear inverse problems with infinite-dimensional parameters. We follow a formulation of the experimental design problem that remains valid in the infinite-dimensional limit. The optimal design is obtained by solving an optimization problem that involves repeated evaluation of the logdeterminant of high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2015